

PRUEBA DE ACCESO Y ADMISIÓN A LA UNIVERSIDAD

OUÍMICA

ANDALUCÍA, CEUTA, MELILLA y CENTROS en MARRUECOS

CURSO 2020-201

Instrucciones:

- a) Duración: 1 hora y 30 minutos.
- b) No es necesario copiar la pregunta, basta con poner su identificación (A1, B4, C3, etc.).
- c) Se podrá responder a las preguntas en el orden que desee.
- d) Exprese solo las ideas que se piden. Se valorará positivamente la concreción en las respuestas.
- e) Se permitirá el uso de calculadoras que no sean programables, gráficas, ni con capacidad para
- almacenar o transmitir datos.

El examen consta de 3 bloques (A, B y C)

En cada bloque se plantean varias preguntas, de las que deberá responder al número que se indica en cada uno. En caso de responder a más cuestiones de las requeridas, serán tenidas en cuenta las respondidas en primer lugar hasta alcanzar dicho número.

BLOQUE A (Formulación)

Puntuación máxima: 1,5 puntos

En este bloque se plantean 2 preguntas de las que debe responder SOLAMENTE 1.

La pregunta elegida tiene un valor máximo de 1,5 puntos.

- A1. Formule o nombre los siguientes compuestos:
- a) Ácido hipocloroso; b) Sulfuro de cadmio; c) Permanganato de potasio; d) Ag₂O; e) Al(OH)₃; f) PbCrO₄
- A2. Formule o nombre los siguientes compuestos:
- a) Nitrito de sodio; b) Hidróxido de cobalto(II); c) Metanol; d) KBr; e) H₃BO₃; f) CH₃CH₂CH₂COOH

BLOQUE B (Cuestiones)

Puntuación máxima: 4,5 puntos

En este bloque se plantean 6 cuestiones de las que debe responder SOLAMENTE 3.

Cada cuestión, a su vez, consta de tres apartados.

Cada cuestión tendrá un valor máximo de 1,5 puntos (0,5 puntos por apartado).

- B1. Razone si las siguientes afirmaciones son verdaderas o falsas:
- a) Los electrones de un mismo orbital tienen el mismo número cuántico de spin.
- b) En el átomo de oxígeno no existen electrones desapareados.
- c) Los elementos del grupo de los halógenos tienen un electrón desapareado.
- **B2.** Para la siguiente reacción: 2 $NO(g) + 2 H_2(g) \rightarrow N_2(g) + 2 H_2O(g)$, la ecuación de velocidad hallada experimentalmente es:

$$v = k [NO]^2 [H_2]$$

- a) ¿Cuáles son los órdenes parciales de reacción? ¿Y el orden total?
- **b)** Si la constante de velocidad para esta reacción a 1000 K es $6.0 \cdot 10^4 \, L^2 \cdot mol^{-2} \cdot s^{-1}$, calcule la velocidad de reacción cuando [NO] = $0.015 \, M$ y [H₂] = $0.035 \, M$.
- c) ¿Cómo afectará a la velocidad de reacción un aumento de la presión, si se mantiene constante la temperatura? Justifique la respuesta.
- B3. Escoja en cada apartado la sustancia que tenga mayor punto de ebullición. Justifique en cada caso la elección, basándose en los tipos de fuerzas intermoleculares:
- a) HF o HCI
- **b)** Br₂ o H₂
- c) CH₄ o CH₃CH₃

PRUEBA DE ACCESO Y ADMISIÓN A LA UNIVERSIDAD

QUÍMICA

ANDALUCÍA, CEUTA, MELILLA y CENTROS en MARRUECOS

CURSO 2020-201

- **B4.** Dados los reactivos: H₂/cat, HCl y H₂O/H₂SO₄, elija, escribiendo la reacción correspondiente, aquellos que partiendo de CH₃CH=CHCH₃ permitan obtener el compuesto A, siendo A:
- a) Un compuesto monoclorado.
- b) Un compuesto que puede formar enlaces de hidrógeno.
- c) Un compuesto que no tiene isomería óptica.
- B5. Justifique, haciendo uso de las reacciones químicas correspondientes:
- a) Si el amoniaco (NH₃) es una base según la teoría de Bronsted-Lowry.
- b) Si una disolución acuosa de acetato de sodio (CH3COONa) tiene un pH mayor de 7.
- c) Cuál es la base conjugada del anión HCO₃⁻
- **B6.** Se prepara una disolución de Fe(OH)₂ en agua, quedando en el fondo del recipiente una parte del sólido sin disolver. Justifique cómo afecta a la solubilidad del compuesto:
- a) La adición de FeCl2
- b) Un aumento del pH.
- c) La adición de agua.

BLOQUE C (Problemas)

Puntuación máxima: 4 puntos

En este bloque se plantean 4 problemas de los que debe responder SOLAMENTE 2.

Cada problema, a su vez, consta de dos apartados.

Cada problema elegido tendrá un valor máximo de 2 puntos (1 punto por apartado).

- a) Calcule las presiones parciales de NO y Cl2 en el equilibrio.
- b) Determine Kp y Kc.

Dato: R= 0,082 atm·L·K-1·mol-1

- C2. a) Calcule las concentraciones de Hg₂²⁺ y de Cl⁻ en una disolución saturada de Hg₂Cl₂
- **b)** Justifique si se formará precipitado cuando a 25 mL de una disolución 0,01 M de $Hg_2(NO_3)_2$ se le añaden 5 mL de HCl 0,002 M. Dato: Ks $(Hg_2Cl_2)=1,2\cdot10^{-18}$
- C3. a) ¿Qué masa de NaOH hay que añadir a 500 mL de agua para obtener una disolución de pH= 11,5?
- b) ¿Qué volumen de disolución comercial de HCl de 35,2% de riqueza en masa y 1,175 g·mL⁻¹ de densidad se necesitan para neutralizar la disolución anterior?

Datos: Masas atómicas relativas: Na= 23; Cl= 35,5; O= 16; H= 1

C4. Un método de obtención de dicloro se basa en la oxidación de ácido clorhídrico con ácido nítrico, produciéndose además dióxido de nitrógeno y agua.

$$HCI + HNO_3 \rightarrow CI_2 + NO_2 + H_2O$$

- a) Ajuste las ecuaciones iónica y molecular por el método del ion-electrón.
- b) Calcule el rendimiento de la reacción sabiendo que se han obtenido 9,78 L de Cl₂, medido a 25 °C y 1 atm de presión, cuando han reaccionado 500 mL de HCl 2 M con HNO₃ en exceso.

Dato: R= 0.082 atm.L.K-1.mol-1