

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2022

QUÍMICA

TEMA 6: EQUILIBRIOS ÁCIDO-BASE

- Junio, Ejercicio B5
- Junio, Ejercicio C3
- Reserva 1, Ejercicio C3
- Reserva 2, Ejercicio B5
- Reserva 2, Ejercicio C3
- Reserva 3, Ejercicio B5
- Reserva 3, Ejercicio C3
- Reserva 4, Ejercicio C3
- Julio, Ejercicio B4
- Julio, Ejercicio C3

Responda razonadamente a las siguientes cuestiones:

- a) ¿Cómo será el pH de una disolución acuosa de NH 4C1?
- b) En el equilibrio: $HSO_4^- + H_2O \rightleftharpoons SO_4^{2-} + H_3O^+$, la especie HSO_4^- ¿actúa como un ácido o una base según la teoría de de Brönsted-Lowry?.
- c) ¿Qué le ocurre al pH de una disolución de NH3 si se le añade agua?.

QUÍMICA. 2022. JUNIO. B5

RESOLUCIÓN

a) El cloruro de amonio proviene del ácido clorhídrico (ácido fuerte) y del amoníaco (base débil) y en agua se disocia: $NH_4Cl + H_2O \rightarrow NH_4^+ + Cl^-$

El Cl⁻ es débil y no reaccionará con el agua, pero el ión amonio es fuerte y sí reacciona con el agua

$$NH_4^+ + H_2O \rightarrow NH_3 + H_3O^+$$

En la hidrólisis se generan iones H_3O^+ , con lo cual la disolución tendrá carácter ácido, pH < 7.

b) Según la teoría de Brönsted-Lowry un ácido es una sustancia que cede protones H^+ a una base, y una base es una sustancia que acepta protones H^+ de un ácido. La especie HSO_4^- está actuando como ácido.

$$HSO_4^- + H_2O \iff SO_4^{2-} + H_3O^+$$

 $acido_1 \quad base_2 \quad base_1 \quad acido_2$

c) Al añadir agua a una base débil, prácticamente no varía el número de moles de OH⁻, pero al aumentar el volumen disminuye la concentración de OH⁻, con lo cual el pH disminuye.

Se tiene una disolución de KOH de 2'4% de riqueza en masa y $1'05~g \cdot mL^{-1}$ de densidad. Basándose en las reacciones químicas correspondientes, calcule:

a) La molaridad y el pH de la disolución.

b) Los gramos de KOH que se necesitan para neutralizar 20 mL de una disolución de ${
m H}_2{
m SO}_4$ 0'5 M.

Masas atómicas relativas: K = 39; O = 16; H = 1

QUÍMICA. 2022. JUNIO. EJERCICIO C3

RESOLUCIÓN

a) Calculamos la molaridad de la disolución

$$M = \frac{\text{moles}}{V} = \frac{\frac{1050 \cdot 0'024}{56}}{1} = 0'45 \text{ M}$$

Calculamos el pH de esta disolución:

$$pOH = -log[OH^{-}] = -log 0'45 = 0'35 \Rightarrow pH = 14 - 0'35 = 13'65$$

b) La reacción de neutralización es: $H_2SO_4 + 2KOH \rightarrow K_2SO_4 + 2H_2O$

Luego:

20 mL H₂SO₄
$$\cdot \frac{0.5 \text{ moles H}_2\text{SO}_4}{1000 \text{ mL H}_2\text{SO}_4} \cdot \frac{2 \text{ moles KOH}}{1 \text{ mol H}_2\text{SO}_4} \cdot \frac{56 \text{ g KOH}}{1 \text{ mol KOH}} = 1.12 \text{ g KOH}$$

Se prepara una disolución tomando 2 mL de ácido nítrico (HNO₃) 15 M y añadiendo agua hasta un volumen total de 0'5 L. Basándose en las reacciones químicas correspondientes, calcule:

- a) La concentración y el pH de la disolución diluida.
- b) ¿Qué volumen de disolución de hidróxido de potasio (KOH), del 40% de riqueza en masa y una densidad de $1'51 \text{ g} \cdot \text{mL}^{-1}$, será necesario para neutralizar 20 mL de la disolución de ácido nítrico 15 M?.

Masas atómicas relativas: K = 39'1; O = 16; H = 1 OUÍMICA. 2022. RESERVA 1. EJERCICIO C3

RESOLUCIÓN

a) Calculamos la molaridad de la disolución

$$M = \frac{\text{moles}}{V} = \frac{15 \cdot 2 \cdot 10^{-3}}{0.5} = 0.06 \text{ M}$$

El ácido nítrico es una ácido fuerte y estará totalmente disociado en sus iones

$$HNO_3 + H_2O \rightarrow NO_3^- + H_3O^+$$

Calculamos el pH de esta disolución: $pH = -log[H_3O^+] = -log 0'06 = 1'22$

b) La reacción de neutralización es: $\text{HNO}_3 + \text{KOH} \rightarrow \text{KNO}_3 + \text{H}_2\text{O}$

Calculamos la molaridad de la disolución de KOH

$$M = \frac{\text{moles}}{V} = \frac{\frac{1510 \cdot 0'4}{56'1}}{1} = 10'77 \text{ M}$$

Luego:

$$V_a \cdot M_a = V_b \cdot M_b \Rightarrow 20 \cdot 10^{-3} \cdot 15 = V_b \cdot 10'77 \Rightarrow V_b = \frac{20 \cdot 10^{-3} \cdot 15}{10'77} = 0'02785 \text{ L} = 27'85 \text{ mL}$$

Las constantes de acidez de los ácidos HClO y HCN son $K_a = 4 \cdot 10^{-8}$ y $K_a = 7' \cdot 25 \cdot 10^{-10}$, respectivamente.

- a) Escriba las reacciones químicas de disociación correspondientes, indicando los pares conjugados ácido/base.
- b) Justifique cuál de las dos bases conjugadas tiene la mayor constante de basicidad.
- c) Justifique si a igual concentración sus disoluciones tienen el mismo valor de pH.
- **QUÍMICA. 2022. RESERVA 2. EJERCICIO B5**

RESOLUCIÓN

a) Las reacciones de disociación son:

$$HCIO + H_2O \rightleftharpoons CIO^- + H_3O^+$$

 $HCN + H_2O \rightleftharpoons CN^- + H_3O^+$

Los pares ácido/base son: HCN/CN y HClO/ClO

- b) La expresión $K_a \cdot K_b = K_w = 10^{-14}$, relaciona las dos constantes.
- Al ácido más débil es el HCN, ya que tiene la K $_{\rm a}$ más pequeña. Por lo tanto, su base conjugada, el CN $^{\rm -}$ será más fuerte que ClO $^{\rm -}$.
- c) El ácido más débil es el HCN, por lo tanto, estará menos disociado que el HClO. Luego, a igual concentración, el HClO tendrá un pH más ácido que el HCN.

Una disolución acuosa de amoniaco (NH₃) tiene una concentración 2 M. Basándose en las reacciones químicas correspondientes, calcule:

- a) El grado de disociación del NH3 y el pH de la disolución.
- b) Los gramos de hidróxido de sodio (NaOH) necesarios para preparar 1 L de una disolución con el mismo pH que la disolución de NH₃ anterior.

Datos: $K_b = 1'8 \cdot 10^{-5}$. Masas atómicas relativas: Na = 23; O = 16; H = 1 OUÍMICA. 2022. RESERVA 2. EJERCICIO C3

RESOLUCIÓN

a) La disolución del amoníaco es el hidróxido de amonio, que es una base débil, disociada parcialmente.

$$K_{b} = \frac{\left[NH_{4}^{+}\right] \cdot \left[OH^{-}\right]}{\left[NH_{3}\right]} = \frac{c^{2}\alpha^{2}}{c(1-\alpha)} = \frac{c \cdot \alpha^{2}}{(1-\alpha)} \Rightarrow 1'8 \cdot 10^{-5} = \frac{2 \cdot \alpha^{2}}{1-\alpha} \Rightarrow \alpha = 3 \cdot 10^{-3}$$

Por definición:

$$pH = 14 - pOH = 14 - log 2 \cdot 3 \cdot 10^{-3} = 11'77$$

b) El NaOH es una base fuerte que está totalmente disociada en sus iones.

$$[OH^{-}] = 2 \cdot 3 \cdot 10^{-3} = 6 \cdot 10^{-3} \Rightarrow [NaOH] = 6 \cdot 10^{-3} = \frac{\text{moles}}{1L} \Rightarrow$$

$$\Rightarrow \text{moles NaOH} = 6 \cdot 10^{-3} \Rightarrow 6 \cdot 10^{-3} \cdot 40 = 0'24 \text{ g NaOH}$$

Justifique el pH de las disoluciones acuosas de las siguientes sales:

- a) NaNO,
- b) NaCN
- c) NH₄Cl

QUÍMICA. 2022. RESERVA 3. EJERCICIO B5

RESOLUCIÓN

- a) El nitrato de sodio proviene del ácido nítrico (ácido fuerte) y del hidróxido de sodio (base fuerte). Ninguno de sus iones se hidroliza y, por tanto, no se generan iones hidronios ni iones hidroxilo por lo que la disolución será neutra y presentará un pH = 7.
- b) El cianuro sódico es una sal que procede de un ácido débil y de una base fuerte.

$$NaCN \ \rightarrow \ Na^{^{+}} \ + \ CN$$

El ión cianuro sufre la reacción de hidrólisis.

$$\text{CN}^- + \text{H}_2\text{O} \rightarrow \text{HCN} + \text{OH}^-$$

y produce un pH básico.

c) Cuando el cloruro amónico se disuelve se disocia en iones cloruro y amonio. El cloruro, que es la base débil conjugada del ácido clorhídrico no se hidroliza. Pero el amonio, ácido débil conjugado del amoníaco, si reaccionará con el agua dando lugar a iones hidronio según:

$$NH_4^+ + H_2O \rightleftharpoons NH_3 + H_3O^+$$

La disolución pues, será ácida y su pH será menor que 7.

Una disolución acuosa de cianuro de hidrógeno (HCN) 0'01 M tiene un pH de 5'6. Basándose en la reacción química correspondiente, calcule:

- a) La concentración molar de todas las especies químicas presentes en el equilibrio.
- b) El grado de disociación del HCN y el valor de su constante de acidez.

QUÍMICA. 2022. RESERVA 3. EJERCICIO C3

RESOLUCIÓN

a)
$${\rm HCN} \ + \ {\rm H_2O} \ \to \ {\rm CN^-} \ + \ {\rm H_3O^+}$$
 inicial c 0 0 equilibrio c(1-\alpha) c\alpha c \alpha c

$$pH = -log [H_3O^+] = 5'6 \Rightarrow [H_3O^+] = 10^{-5'6} = 2'51 \cdot 10^{-6}$$

$$\left[H_3O^+\right] = 2'51 \cdot 10^{-6} = c\alpha \Rightarrow \alpha = \frac{2'51 \cdot 10^{-6}}{0'01} = 2'51 \cdot 10^{-4}$$

Las concentraciones de las especies son:

$$\begin{split} \left[H_3O^+\right] = & \left[CN^-\right] = 2'51 \cdot 10^{-6} \\ \left[HCN\right] = & c(1-\alpha) = 0'01(1-2'51 \cdot 10^{-4}) = 9'99 \cdot 10^{-3} \end{split}$$
 b)
$$K_a = \frac{\left[CN^-\right] \cdot \left[H_3O^+\right]}{\left[HCN\right]} = \frac{c^2\alpha^2}{c(1-\alpha)} = \frac{c \cdot \alpha^2}{(1-\alpha)} = \frac{0'01 \cdot (2'51 \cdot 10^{-4})^2}{1-2'51 \cdot 10^{-4}} = 6'3 \cdot 10^{-10} \end{split}$$

Se disuelven 27'05 g de ácido metanoico (HCOOH) en agua hasta 1 L de disolución. Si el pH de la disolución obtenida es 2, basándose en la reacción química correspondiente, calcule:

a) El grado de disociación y el valor de la constante de disociación del ácido.

b) El pH de una disolución del mismo ácido de concentración 0'2 M.

Datos: Masas atómicas relativas: C = 12; O = 16; H = 1.

QUIMICA. 2022. RESERVA 4. EJERCICIO C3

RESOLUCIÓN

$$c = \frac{\frac{27'05}{46}}{1} = 0'588 \text{ M}$$

$$pH = -\log \left\lceil H_3O^+ \right\rceil = -\log c\alpha \Rightarrow 2 = -\log 0'588 \cdot \alpha \Rightarrow 10^{-2} = 0'588 \cdot \alpha \Rightarrow \alpha = 0'017$$

$$K_{a} = \frac{\left[HCOO^{-}\right] \cdot \left[H_{3}O^{+}\right]}{\left[HCOOH\right]} = \frac{c \cdot \alpha^{2}}{(1-\alpha)} = \frac{0'588 \cdot (0'017)^{2}}{(1-0'017)} = 1'72 \cdot 10^{-4}$$

b) Calculamos el nuevo grado de disociación

$$K_a = 1'72 \cdot 10^{-4} = \frac{0'2 \cdot \alpha^2}{(1-\alpha)} \Rightarrow 0'2 \cdot \alpha^2 + 1'72 \cdot 10^{-4} \alpha - 1'72 \cdot 10^{-4} = 0 \Rightarrow \alpha = 0'029$$

$$pH = -\log[H_3O^+] = -\log c\alpha = -\log 0'2 \cdot 0'029 = 2'24$$

Justifique si son verdaderas o falsas las siguientes afirmaciones:

- a) El par H₃O + /OH es un par conjugado ácido-base.
- b) Al diluir con agua una disolución acuosa de un ácido fuerte no se modifica el valor del pH.
- c) El pH neutro de una disolución acuosa de NaCl no se modifica al adicionar KCl.
- QUÍMICA. 2022. JULIO. EJERCICIO B4

RESOLUCIÓN

- a) Falsa. Según la teoría de Brönsted-Lowry los ácidos ceden protones y las bases toman protones. El $\rm H_3O^+$ si cede un protón se convierte en $\rm H_2O$ que sería su base conjugada, luego el par sería $\rm H_3O^+/H_2O$. Si el $\rm OH^-$ toma un protón se convierte en $\rm H_2O$ que sería su ácido conjugado, luego el par sería $\rm H_2O/OH^-$.
- b) Falsa. Un ácido fuerte está totalmente disociado. Al añadir agua, la concentración de $\rm H_3O^+$ varía, con lo cual el pH también varia.
- c) Verdadera. El NaCl forma disoluciones neutras ya que es una sal de ácido fuerte y base fuerte. El KCl también es una sal de ácido fuerte y base fuerte. Por eso, el pH no se modifica.

En una disolución acuosa 0'03 M de amoniaco $(\mathrm{NH_3})$, éste se encuentra disociado en un 2'4 %.

Basándose en la reacción química correspondiente, calcule:

- a) El pH de la disolución y el valor de la constante de basicidad del amoniaco.
- b) La molaridad que debe tener una disolución de NH 3 para que su pH sea 11.

QUÍMICA. 2022. JULIO. EJERCICIO C3

RESOLUCIÓN

a)
$$NH_3 + H_2O \rightarrow NH_4^+ + OH^-$$
 inicial c 0 0 0 equilibrio c(1-\alpha) c\alpha c \alpha c \alpha

$$K_{b} = \frac{\left[NH_{4}^{+}\right] \cdot \left[OH^{-}\right]}{\left[NH_{3}\right]} = \frac{c^{2}\alpha^{2}}{c(1-\alpha)} = \frac{c \cdot \alpha^{2}}{(1-\alpha)} = \frac{0'03 \cdot 0'024^{2}}{1-0'024} = 1'77 \cdot 10^{-5}$$

Calculamos el pH

$$[OH^{-}] = c \cdot \alpha = 0'03 \cdot 0'024 = 7'2 \cdot 10^{-4} \Rightarrow pOH = -\log 7'2 \cdot 10^{-4} = 3'14 \Rightarrow pH = 14 - pOH = 14 - 3,14 = 10'86$$

b)
$$pH = 11 \Rightarrow pOH = 14 - 11 = 3 \Rightarrow OH^{-} = c \cdot \alpha = 10^{-3}$$

$$K_{b} = \frac{\left[NH_{4}^{+}\right] \cdot \left[OH^{-}\right]}{\left[NH_{3}\right]} = \frac{c^{2}\alpha^{2}}{c(1-\alpha)} = \frac{(c \cdot \alpha)^{2}}{c - c\alpha} = 1'77 \cdot 10^{-5} \Rightarrow \frac{\left(10^{-3}\right)^{2}}{c - 10^{-3}} = 1'77 \cdot 10^{-5} \Rightarrow c = 0'057 \text{ M}$$