

PRUEBA DE EVALUACIÓN DE BACHILLERATO PARA EL ACCESO A LA UNIVERSIDAD Y PRUEBAS DE ADMISIÓN

QUÍMICA

ANDALUCÍA, CEUTA, MELILLA y CENTROS en MARRUECOS

CONVOCATORIA EXTRAORDINARIA. CURSO 2021-2022

Instrucciones:

- a) Duración: 1 hora y 30 minutos.
- b) No es necesario copiar la pregunta, basta con poner su identificación (A1, B4, C3, etc.).
- c) Se podrá responder a las preguntas en el orden que desee.
- d) Exprese solo las ideas que se piden. Se valorará positivamente la concreción en las respuestas.
- e) Se permitirá el uso de calculadoras que no sean programables, gráficas, ni con capacidad para

almacenar o transmitir datos.

El examen consta de 3 bloques (A, B y C)

En cada bloque se plantean varias preguntas, de las que deberá responder al número que se indica en cada uno. En caso de responder a más cuestiones de las requeridas, serán tenidas en cuenta las respondidas en primer lugar hasta alcanzar dicho número.

BLOQUE A (Formulación)

Puntuación máxima: 1,5 puntos

En este bloque se plantean 2 preguntas de las que debe responder SOLAMENTE 1.

La pregunta elegida tiene un valor máximo de 1,5 puntos.

- A1. Formule o nombre los siguientes compuestos:
- a) Selenuro de hidrógeno; b) Óxido de estaño(IV); c) Pentan-2-ona; d) HClO₄; e) CaCO₃; f) CH₂OHCH(CH₃)₂
- A2. Formule o nombre los siguientes compuestos:
- a) Hexafluoruro de azufre; b) Hidrogenofosfato de potasio; c) Hexan-2-amina; d) HBrO; e) TiO2; f) CH2=CHCH2CONH2

BLOQUE B (Cuestiones)

Puntuación máxima: 4,5 puntos

En este bloque se plantean 6 cuestiones de las que debe responder SOLAMENTE 3.

Cada cuestión, a su vez, consta de tres apartados.

Cada cuestión tendrá un valor máximo de 1,5 puntos (0,5 puntos por apartado).

- **B1.** Indique para el isótopo $^{65}_{30}Zn$:
- a) El número de protones, electrones y neutrones que tiene.
- b) Un conjunto posible de números cuánticos para su electrón diferenciador.
- c) El ion más estable que puede formar.
- B2. Razone si las siguientes afirmaciones son verdaderas o falsas:
- a) La primera energía de ionización del magnesio es menor que la del sodio.
- b) El B3+ tiene un radio iónico mayor que el Be2+
- c) Los elementos del grupo 17 (halógenos) tienen poca tendencia a ganar electrones.
- B3. Dadas las especies químicas H2S y PCl3:
- a) Represente la estructura de Lewis de cada molécula.
- b) Justifique la geometría de cada molécula según la TRPECV.
- c) Indique la hibridación que presenta el átomo central de cada una de las especies.
- B4. Justifique si son verdaderas o falsas las siguientes afirmaciones:
- a) El par H₃O+ / OH- es un par conjugado ácido / base.
- b) Al diluir con agua una disolución acuosa de un ácido fuerte no se modifica el valor del pH.
- c) El pH neutro de una disolución acuosa de NaCl no se modifica al adicionar KCl.

PRUEBA DE EVALUACIÓN DE BACHILLERATO PARA EL ACCESO A LA UNIVERSIDAD Y PRUEBAS DE ADMISIÓN

QUÍMICA

ANDALUCÍA, CEUTA, MELILLA y CENTROS en MARRUECOS

CONVOCATORIA EXTRAORDINARIA. CURSO 2021-2022

- B5. La notación correspondiente a la pila Daniell es: Zn(s) | Zn²+(aq, 1 M) || Cu²+(aq, 1 M) | Cu(s), ΔΕ° = 1,10 V
- a) Escriba la semirreacción que ocurre en el ánodo.
- b) Sabiendo que el potencial estándar de reducción del electrodo Cu²+/Cu es 0,34 V, determine el potencial estándar de reducción del electrodo Zn²+/Zn.
- c) Razone si al cambiar el electrodo de cinc por uno de plomo aumenta o disminuye el potencial de la pila.

Dato: $E^{\circ}(Pb^{2+}/Pb) = -0.13 \text{ V}$

- B6. a) Escriba dos compuestos isómeros de fórmula molecular C2H6O.
- b) Formule el alcano con menor número de átomos de carbono que presente isomería óptica.
- c) Considerando las moléculas de etano (C₂H₆) y eteno (C₂H₄), justifique cuál de ellas tiene el enlace carbono-carbono de menor longitud.

BLOQUE C (Problemas)

Puntuación máxima: 4 puntos

En este bloque se plantean 4 problemas de los que debe responder SOLAMENTE 2.

Cada problema, a su vez, consta de dos apartados.

Cada problema elegido tendrá un valor máximo de 2 puntos (1 punto por apartado).

C1. El SbCl₅ se descompone un 6,8% a 190 °C, de acuerdo con la siguiente ecuación:

 $SbCl_5(g) \rightleftharpoons SbCl_3(g) + Cl_2(g)$ $K_p = 9.3 \cdot 10^{-2}$

Se introduce una cantidad de SbCl₅ en un recipiente cerrado de 0,5 L y se calienta a 190 °C, calcule:

- a) La masa en gramos de SbCl₅ que hay inicialmente en el recipiente.
- b) Las presiones parciales de todas las especies y la presión total en el equilibrio.

Datos: R= 0,082 atm·L·mol⁻¹·K⁻¹; Masas atómicas relativas: Sb= 121,8; Cl= 35,5

- C2. a) Si se sabe que en 200 mL de una disolución saturada de SrF2 hay disueltos 14,6 mg de la sal, calcule su producto de solubilidad.
- b) Determine si se forma precipitado de Pbl₂ al mezclar 50 mL de KI 1,2·10⁻³ M con 30 mL de Pb(NO₃)₂ 3·10⁻³ M.

Datos: Ks (Pbl₂)= 7,9·10⁻⁹; Masas atómicas relativas: Sr= 87.6; F= 19

- C3. En una disolución acuosa 0,03 M de amoniaco (NH₃), este se encuentra disociado en un 2,4%. Basándose en la reacción química correspondiente, calcule:
- a) El pH de la disolución y el valor de la constante de basicidad del amoniaco.
- b) La molaridad que debe tener una disolución de amoniaco para que su pH sea 11.
- C4. Se dispone de una celda electrolítica que contiene CaCl₂ fundido. Si se hace pasar una corriente de 0,452 amperios durante 1,5 horas, calcule:
- a) La cantidad, en gramos, de Ca que se depositará en el cátodo.
- b) El volumen de Cl2, medido a 700 mmHg y 25 °C, que se desprenderá.

Datos: F= 96500 C·mol⁻¹; R= 0,082 atm·L·mol⁻¹·K⁻¹; Masas atómicas relativas: Cl= 35,5; Ca= 40,1